[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Al-Saeed University Journal of Applied Sciences SJAS
journal@alsaeeduni.edu.ye gz 2
e
Vol (7), No(2), Dec., 2024 '%f?ed .

Ces

s,

&

0’(‘ n

X
ISSN: 2616 — 6305 (Print) I1SSN: 2790-7554 (Online) ~Appie™

Developing a model to detect and prevent DDoS
attacks in SDN environments using machine learning

Raad Abdo Mohammed Al Selwi
Department of IT, Al Saeed faculty for Engineering and IT, Taiz
University, Yemen
Department of Cyber Security, Engineering and IT Faculty, Al
Saeed University, Yemen

raad.alselwi@alsaeeduni.edu.ye

Mogeeb Abdulhakim Saeed
Department of CNDS, Al Saeed faculty for Engineering and IT,

Taiz University, Yemen
mogeeb1982@taiz.edu.ye

Mohammed Ahmed M. Saif

Department of CNDS, Al Saeed faculty for Engineering and IT,
Taiz University, Yemen
mohammedahmed775979036@gmail.com
Ammar Hasan M. Almagashi
Department of CNDS, Al Saeed faculty for Engineering and IT,
Taiz University, Yemen
Ammar7760www@gmail.com
Abdullah Mofareh Saleh Saeed
Department of CNDS, Al Saeed faculty for Engineering and IT,
Taiz University, Yemen
Fuad Abdo Mahyoub Mohammed
Department of CNDS, Al Saeed faculty for Engineering and IT,
Taiz University, Yemen

Received: 19/10/2024 Accepted: 13 /9/2024

Journal Website: https://journal.alsaeeduni.edu.ye

[Al — Saeed University Journal of Applied Scienc@6> Vol (7), No(2), Dec., 2024]

https://journal.alsaeeduni.edu.ye/
mailto:journal@alsaeeduni.net
mailto:raad.alselwi@alsaeeduni.edu.ye
mailto:mogeeb1982@taiz.edu.ye
mailto:mohammedahmed775979036@gmail.com
mailto:Ammar7760www@gmail.com

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

ciliy A DDOS 4 gall daddd) (b) Clasa aila g ALAISY 73 gal gl
Y alail) aladiody ey 4d jral) cilSdl)
sokall s taaaoae 2o /Caldl
el ¢ 320 Amala ola glaal) 44585 ¢ Arigll duad) A4S (il slaall LSS ol
Oatl) cpmud) Aaala (e sheall 455 5 gl A4S ¢ 1) Y1 and

S aiSallae cuaa /Galdl

Ol ¢ Amala el shaal) A 5 Auntighl dpedl IS e) gal) alal y SN dria and
i daaa daa) deaa /Ealld)

Ol ¢ Amala el shaal) A g duatighl el IS e) gall alaill y SN duria and

izl pag dada G jles /Calyd)

Ol ¢ Amala el shaal) A 5 dustighl el IS e) gal) alaill g CASLEN dunia and
L e 7 jda diae /dall)

Sl ¢ Amala el shaal) A g duatighl el IS e) gl alaill SN dunia and
dada G gagea o2 3138 /il

Sl ¢ Amala el shaal) 4y Auntighl el IS e) gl alaill y SN dunia and

uaﬂA.“

Ll g (5aY) Asgeny ASialinalls 8)okiiall SDN ilina pdls 48 peall Cleidd) Ay puas

@l Aaalial) Lrpdall £dls Lglens Lae () Gl) ae CaSall AL (g oSl

a8 il salefs A< all b Saill Caillag Jaad o Lol clagdanl Jlad) g5l Uail

Al) Al Al 2 A% g A0 Al 8 HSanll 5y bl Ayl e Las caaaal

sdgd Aaatl Al e S5 Al Al cleagl) gl gaa) A<) cilead s culilaill

e Cme Al (paadi) adal Hliall g yall ASyas Ldlje) B cpadl (g &5 b &gl

GUIA cdning asagll 138 GLESY (i) e degydall lardll ol cagilbloa) Jsasl)

& DDoS &_}}“J‘ LAl ady Cilena &g alansy CJ}A—\ _):\}L:u dhaal) 48)0) oda 8 Liad

asagdl Glasl e 75l #3gall Janag - V) aleill aladials Gaays A8 peall clSedl) culiy

Ml g Cayrall ady mad iy ¢ Slea Y bl g5 A5 dalles J8 A —als A0 L)

Basg (DAe) b o) (s0 bl oda Jalad i eyl 1)) Aadlall & Ganall g canjd (8 S

Sal

¢ NV abal e ysall Aarall by agaa limanlls Adprall Gl 8 :dalital clals)

[Al — Saeed University Journal of Applied Scienc@?) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Developing a model to detect and prevent DDoS attacks in SDN
environments using machine learning

Raad Abdo Mohammed Al Selwi
Department of IT, Al Saeed faculty for Engineering and IT,
Taiz University, Yemen
Department of Cyber Security, Engineering and IT Faculty,
Al Saeed University, Yemen
Mogeeb Abdulhakim Saeed
Department of CNDS, Al Saeed faculty for Engineering and IT,
Taiz University, Yemen
Mohammed Ahmed M. Saif
Department of CNDS, Al Saeed faculty for Engineering and IT,
Taiz University, Yemen
Ammar Hasan M. Almagashi
Department of CNDS, Al Saeed faculty for Engineering and IT,
Taiz University, Yemen
Abdullah Mofareh Saleh Saeed
Department of CNDS, Al Saeed faculty for Engineering and IT,
Taiz University, Yemen
Fuad Abdo Mahyoub Mohammed
Department of CNDS, Al Saeed faculty for Engineering and IT,
Taiz University, Yemen

Abstract

A developing architecture called Software-Defined Networking (SDN) is
dynamic, manageable, affordable, and adaptive, making it perfect for the high-
bandwidth, dynamic nature of today's applications. The network control and
forwarding functions are separated in this design, allowing for direct programming
of the network control and the abstraction of the underlying infrastructure for
applications and network services. One type of cyber-attack that affects the
infrastructure of these networks is a Distributed Denial-of-Service (DDoS) attack.
When a victim is the target of a DDoS attack, the servers are jammed or
overwhelmed with the malicious traffic to prevent the legitimate users from
accessing their accounts or legitimate online services. To detect and prevent this
attack, in this paper we developed a model to detect and prevent a DDoS attack in
SDN environments using machine learning. The proposed model work to detect the
attack by identifying the attacker's switch ID and port number, and collect them as a
unique number that is added to a special list. Before processing data traffic for any
device, the ID number and port number are combined as a unique number, and the
list is searched. If they match, this data is ignored, without closing the controller.
Keywords: Software Defined Networking, Denial-of-Service attack, Machine
learning, Detect and prevent DDoS attack.

[Al — Saeed University Journal of Applied Scienc@S) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Introduction:

A Distributed Denial-of-Service (DDoS) attacks are widely used to run out
the target’s network bandwidth or process resources. DDoS attacks are not
only effective in traditional networks, but also available in software-defined
networking (SDN) environments [1]. SDN controller is subjected to many
different types of attacks. The most critical security issues for the SDN
controller are DDoS attack, since if the controller is brought down, the whole
network will be stopped. The main aim of a DDoS attack is to make the
computing resources unavailable for the users. SDN separates a network’s
control logic from switches, simplifies network management. It allows
network administrators to manage network services through abstraction of
lower-level functionality. SDN is meant to address the fact that the static
architecture of traditional network doesn’t support dynamic, scalable
computing and storage needs of more computing environments such as data
centers. This is done by decoupling or disassociating the system that makes
decisions about where traffic is sent (The Control Plane) from the underlay
systems that forward traffic to the selected destination (The Data Plane).
These specific capabilities make SDN deployable in many network
environments, from home and enterprise network to data centers in cloud
networks.

To detect DDoS attack in SDN they were used many of methods and
algorithms as Sample entropy and Principal Component Analysis (PCA), but
all these methods when detect the attack, led to stop the control unit in
network.

Sample entropy, a general method for DDoS detection in SDN, is
conducted by collecting the flow statistics or traffic features from the
switches, and calculating the entropy measure randomness in the packets that
are coming to a network. The higher the randomness, the higher is the entropy
and vice versa. By setting a threshold, if the entropy passes it or below it,
depending on the scheme, an attack is detected [2].

Principal Component Analysis (PCA) is a coordinate transformation
method that maps the measured data onto a new set of axes. These axes are
called the principal axes or components, where each principal component has
the property that it points in the direction of maximum variation or energy

[Al — Saeed University Journal of Applied Scienc@Q) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

remaining in the data, given the energy already accounted for, in the
preceding components [1].

In this paper, to detect and prevent this attack, we developed a model to
detect and prevent a DDoS attack in SDN environments using machine
learning. The proposed model work to detect the attack by identifying the
attacker's switch ID and port number, and collect them as a unique number
that is added to a special list. Before processing data traffic for any device,
the 1D number and port number are combined as a unique number, and the
list is searched. If they match, this data is ignored, without closing the
controller.

Problem Statement:

DDoS attacks are widely used to run out the target’s network bandwidth
or process resources. DDoS attacks are effective and available in SDN
environments. The most critical security issues for the SDN controller are
DDosS attack, since if the controller is brought down, the whole network will
be stopped. When using sample entropy and PCA algorithms to detect DDOS
attacks in SDN, these algorithms run in case of attack detection to shut down
the microcontroller, which causes the network to go down.

Research Aim:

This study aims to develop and evaluate a model to detect and prevent
distributed denial of service attacks in software-defined networks using
machine learning, while keeping the network controller running non-stop.
Research objectives:

The research aims to achieve the following objectives:

1- Configure and setup of the virtual work environment for the network using

VVMware and Mininet network emulator.

2- Creating SDN network topology.
3- Launch of DDoS attacks in the created topology.
4- Use POX controller to detection and prevention of DDoS attacks using

Sample entropy and PCA algorithms.

5- Develop a model to detect and prevent distributed denial of service attacks
in software-defined networks using machine learning.

6- Evaluating the performance of the proposed model to detect and prevent
attacks with Sample entropy and PCA algorithms.

[Al — Saeed University Journal of Applied SciencG(D Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Research Importance:

The importance of the research lies in evaluating the performance of the
algorithms of a Sample entropy and PCA in terms of detecting and preventing
DDosS attacks in a SDN environment, and develop the model to detect and
prevent which leads to improving network performance and not stopping it
due to attacks.

Research questions:

According to the problem statement mentioned above, the following
questions are generated:

1. What method is used to generate data traffic and attack?

2. How was the attack detecting?

3. How was the attack prevention?

4. Is the proposed algorithm more efficient than sample entropy and PCA
algorithms in detecting and preventing DDoS attacks in an SDN
environment?

5. Will the proposed algorithm be able to detect and prevent DDoS attacks in
an SDN environment without stopping the network?

Related Work:

A DDosS attack aims to disable network services by using up all available
resources. An SDN is more vulnerable to the effects of this DDoS attack than
a conventional one. This is because each time a new Origin-Destination pair
is created, the controller will be called. Therefore, if an attacker floods a
network with too many packets in a short period of time, the controller will
be damaged, which will cause the network to crash.

Many previous studies dealt with the detection and mitigation of DDoS
attacks on SDN using different types of Al techniques and machine learning
algorithms, including:

Di Wu, Jie Li, Sajal K. Das, Jin Song Wu, and Yusheng Ji. [1] they
introduce a novel DDoS scheme using principal component analysis, to detect
DDoS attack on SDN environment. Then, they put it into test, made a
comparison with Sample entropy, a popular used scheme. They show that this
scheme has clearer result than another. Meanwhile, they identify a novel
DDoS attack aiming on SDN environment, which could cause more damage
on SDN, and used the two-detection method on this novel DDoS attack, and

[Al — Saeed University Journal of Applied Scienc@]) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

found this novel attack is hard to be detected by sample entropy, and still be
captured by PCA.

Aswanth, Mohammed Ameen and Joe Antony [3] To successfully
detect DDoS attacks, they have put two strategies into practice. The findings
indicate that PCA is a superior strategy than sample entropy because: In
sample entropy, any packet with an entropy value below the threshold is
recorded in a dictionary, and if an entry appears more than five times, it is
assumed to be a DDoS attack. This knobe value of 5 is topologically
dependent. Therefore, a smaller topology may potentially exhibit DDoS
attacks for regular traffic.

But in PCA analysis, we are taking characteristics of each packet to update
the principal component axis. Each packet destination value is compared with
current principal component axis. During an attack, the principal component
axis is gradually shifted towards the destination value. Hence, there will be
successive decrease in delta Y values, which is an indication of DDoS attack.
However, both algorithms used in this study detect the attack and, as a
handler, close the microcontroller, causing the network to stop.

Qin et al. in their study [4]. They were suggested approach with a
window of 0.1 seconds and three threshold levels. This approach focuses on
preventing false positive and false negative network results. The strategy,
however, takes more time and resources, as the authors themselves note.

Ra et al.'s [5] proposal for a quicker method of computing entropy bases
it on both the kind and quantity of packets in the network. This approach
likewise employs a window of time. The threshold was determined by the
authors using numerous datasets and is a multiple of the entropy values'
standard deviation. Compared to other approaches, this method has more false
negatives and less false positives. There is no mention of accuracy
percentage. Additionally, there is no mention of the tools utilized for quick
computation.

The work presented by the researchers in ways to analyses the incoming
traffic in SDN has shown that every network flow has certain parameters and
features which can be monitored and collected to extract the exact features
required to detect malicious DDOS traffic in a network. Our presented
method uses both statistical and machine learning methods to detect and
mitigate DDOS attacks in an SDN. The proposed model work to detect the

[Al — Saeed University Journal of Applied Scienc@Z) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

attack by identifying the attacker's switch ID and port number, and collect
them as a unique number that is added to a special list. Before processing data
traffic for any device, the ID number and port number are combined as a
unique number, and the list is searched. If they match, this data is ignored,
without closing the controller.

Background:

SDN offers a fresh viewpoint on networking. The main objective is to get
more control over network resources. Vendors translate control and
forwarding functions, which frequently include proprietary software, into
functional networking hardware today. Figure (1) shows the SDN architecture
between the control plane and forwarding allows network managers to
assume control of the control plane [6]. This separation is made possible by
altering the network so that the switch gets commands to forward rather than
spending its resources to handle incoming messages. Databases with streams
for sending commands will be present in the adaptor.

APPLICATION LAYER [J—l
Services Business Applications

I I AII API API

Network

CONTROL LAYER
Services

Network Services

Ifa | OpenFlow protocol

Figure (1). SDN architecture

DDoS attacks in SDNs:

Some of the most common yet dreadful attacks on SDNs are DoS and
DDoS attacks. Such attacks affect performance and network behavior. By
exhausting resources, they disable or downgrade network services, and

[Al — Saeed University Journal of Applied Scienc@?) Vol (7), No(2), Dec., 2024]

https://www.sciencedirect.com/topics/computer-science/denial-of-service
https://www.sciencedirect.com/topics/computer-science/distributed-denial-of-service-attack
https://www.sciencedirect.com/topics/computer-science/network-service

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

legitimate hosts are not able to communicate with the SDN controller or to
send packets on the network [7].

DoS or DDoS attacks are achieved in SDNs by creating several new flows
that flood the bandwidth of the control plane, the OpenFlow switches, and the
SDN controller, which results in network failure for legitimate hosts. More
specifically, attackers generate several new flows that have spoofed IP
addresses but are sent from a single source (DoS) or multiple sources (DDoS).
These spoofed addresses do not match any existing flow rules in the flow
table of the OpenFlow switch, resulting in a table-miss situation. Such a
situation results in generating massive packet-in messages sent to the SDN
controller from the victim OpenFlow switch, which consumes
communication bandwidth, memory, and CPU in both the control and the data
plane of SDN [8]. Moreover, since the OpenFlow switch buffers packet-in
messages before sending them to the controller, if several new flows are
received within a very short time, the buffer fills up. This results in sending
the entire packets of the new flow to the controller instead of sending the new
flow’s headers-only packet-in messages, thus resulting in higher consumption
of the control plane’s bandwidth and potentially delaying installation of new
flow rules received from the SDN controller. Another situation in which
massive new flows could result is filling up the forwarding table of the
OpenFlow switch. As mentioned earlier, such a table includes different flow
rules that direct the switch about forwarding the packets, and it is updated and
managed by the controller [9]. Having several new flows results in installing
new rules to the forwarding table of the switch. At some point, the forwarding
table fills up, and therefore, upon receiving a new flow rule from the
controller, it is unable to install it—hence dropping the packet and sending an
error message to the controller [10]. Moreover, the switch would not be able
to forward packets until there is free memory in its forwarding table, resulting
in delays and dropping of incoming packets [11].

On the controller side, a high arrival rate of packet-in messages exceeding
the controller processing capability results in overwhelming the controller
and making it unreachable to legitimate traffic. This could result in the failure
of the entire network, as the controller implements the logic of the SDN and
manages the applications and the OpenFlow switches [11]. Figure (2), shows
a schematic view of a DoS/DDoS attack in SDNs.

[Al — Saeed University Journal of Applied Scienc@z]) Vol (7), No(2), Dec., 2024]

https://www.sciencedirect.com/science/article/pii/S0167739X21000911#b6
https://www.sciencedirect.com/topics/computer-science/distributed-denial-of-service
https://www.sciencedirect.com/topics/computer-science/communication-bandwidth
https://www.sciencedirect.com/science/article/pii/S0167739X21000911#b12
https://www.sciencedirect.com/science/article/pii/S0167739X21000911#b9
https://www.sciencedirect.com/science/article/pii/S0167739X21000911#b5
https://www.sciencedirect.com/topics/computer-science/forward-packet
https://www.sciencedirect.com/science/article/pii/S0167739X21000911#b13
https://www.sciencedirect.com/science/article/pii/S0167739X21000911#b13
https://www.sciencedirect.com/science/article/pii/S0167739X21000911#fig3

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

6. Exhaust Resources
g i 7. Controller is Down

SDN Controller

Normal User
1.New Flows
5. Communication Overhead

3. Qverflow Buffer
> - 4. Overflow Flow Tables
2.New Flows OpenFlow Switch

Figure (2). DDoS attacks in SDNs.

Attacker

Anomaly Detection for DDoS Mitigation:

The irregular traffic provided to the victim is a recurring theme in several
DDoS attack types. There is a pattern to the network activity under typical
conditions, and a standard rate of bandwidth use. This is frequently seen as
abnormal if there is an abrupt rise in traffic, delay, CPU consumption, or
abrupt decrease in performance of any of the network assets. Such network
anomalies will be sought for by any DDoS detector. Anomalies typically have
to do with the type of data being transmitted over the network [12]. The
assault may target the application layer, causing CPU resource exhaustion, or
the network layer, creating a bottleneck. The first step in finding anomalies
in a network is to understand the type of data and its characteristics. These
traits can include protocol, packet size, delay, header information, and packet
header information. For instance, attacks are most likely TCP SYN request
flooding in a server that answers to TCP SYN queries. This is also where
anomaly detection is most likely to take place. In actuality, the nature of the
network determines the sort of intrusion. The detection and mitigation of the
danger must be matched to the sort of threat that a network is vulnerable to.

Types of Anomaly Detection Techniques:

There is a set amount of processing power and bandwidth available in IP
networks for transmitting traffic. When some network properties are
statistically analyzed, a pattern will emerge for each property [13]. The
pattern is more trustworthy the longer the period of time. This is only

[Al — Saeed University Journal of Applied Scienc@S) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

accurate, though, if the network experiences constant traffic. In the long run,
statistics will stabilize and cannot be fully trusted if there are deviations that
are accepted as typical traffic.

Different approaches are taken to data collecting, filtering, and processing
for anomaly detection. Two of the often-used techniques for detecting
anomalies are statistical analyses and machine learning.

For spotting changes in network traffic, statistical analysis like the entropy
and chi-square approaches have been proposed [14].

Another technique for protecting networks from infiltration is machine
learning and cognitive detection. An algorithm is trained to continuously
update its filtering criteria based on the network events, as opposed to setting
up a preset filter.

Neural networks are one such system [15]. Multiple nodes operate in
parallel to process data in neural networks. Like the human brain, they
function. When neurons or nodes receive extensive training or information, a
pattern for processing related input emerges from their collective expertise.
Input, output, and hidden layers in the center, which process the input data,
make up the three primary layers of neural networks. The nodes are learning
more as time goes on and more data is processed, and a more distinct pattern
starts to show.

The brains behind these networks' decision-making are algorithms. The
Multilayer Perceptron (MLP), Gaussian Classifier (GAU), K-means
Clustering (K-M), and Markov model are some popular techniques in
network intrusion and anomaly detection [16] [17] [18]. Sample entropy and
PCA are the techniques utilized in this research to construct a detection
method in the Open flow controller, then we will propose model to detect and
prevent DDoS attack in SDN and we evaluate the performance these
techniques with proposed model.

Sample entropy for DDoS Detection:

Before implementing a technique in an SDN network, it is crucial to
examine how it is utilized in non-SDN networks. We must rely on research
conducted in fields other than SDN because there hasn't been any study of
this strategy in SDN.

Window size and a threshold are two crucial elements in DDoS detection
utilizing entropy [11]. Either time or the quantity of packets is used to

[Al — Saeed University Journal of Applied Scienc@ﬁ) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

determine the window size. Within this window, entropy is calculated to
assess the degree of uncertainty in the incoming packets. An assault detection
threshold is required. Depending on the technique, an attack is recognized if
the estimated entropy exceeds or falls below a certain threshold.

Entropy has not, as far as we are aware, been used in SDN; rather, it has
been used in a number of ways to detect DDoS attacks in the network.

Any detection approach in SDN when forwarding packets to the controller
must include the restriction of available resources and the quick identification
of attacks.

PCA:

PCA, is a technique for reducing the number of dimensions in large data
sets by condensing a large collection of variables into a smaller set that retains
the majority of the large set's information.

Accuracy naturally suffers as a data set's variables are reduced, but the
answer to dimensionality reduction is to trade a little accuracy for simplicity.
since machine learning algorithms can analyze data points considerably more
quickly and easily with smaller data sets since there are less extraneous
variables to process.

In conclusion, PCA's basic principle is to minimize the number of
variables in a data set while maintaining as much accuracy as possible.
Research Methodology:

The proposed methodology will discuss the configuring and setup of the
virtual work environment for the network using VMware and Mininet
network emulator, creating SDN network topology and the tools and methods
that were used for the implementation process, launch of DDoS attacks in the
created topology.

This section also will discuss the use POX controller to detection and
prevention of DDoS attacks using Sample entropy and PCA algorithms.

This section also will discuss the developing a model to detect and prevent
DDoS attacks in SDN using machine learning.

Finaly we will be evaluating the performance of the proposed model to
detect and prevent attacks with Sample entropy and PCA algorithms.
Figure (3), shows the research methodology.

[Al — Saeed University Journal of Applied Scienc@?) Vol (7), No(2), Dec., 2024]

https://www.sciencedirect.com/science/article/pii/S0167739X21000911#fig3

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Configuring and setup of the

virtual work environment

Creating SDN network
topology

Launch of DDoS attacks in the
created topology

Detection and prevention of DDoS attacks
using Sample entropy and PCA algorithms

Developing a model to detect and prevent DDoS
attacks in SDN using machine learning

Evaluating the performance of the proposed model to detect and
prevent attacks with Sample entropy and PCA algorithms

Figure (3). Research methodology

Configuring and setup of the virtual work environment:
Configuring and setup of the virtual work environment for the SDN
network using VMware and Mininet network emulator.

POX Controller:

The Open Flow protocol can be used to communicate with SDN switches
utilizing the POX architecture. Using Python programming, developers can
use POX to create an SDN controller [19]. It is a well-liked teaching and
research tool for network programming and SDN. By utilizing the stock
components that are provided with it, POX can be deployed right away as a
simple SDN controller. When POX is launched from the command line, POX
components are extra Python applications that can be used. The SDN network
functionality is implemented by these components.

[Al — Saeed University Journal of Applied Scienc@8> Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Mininet:

Mininet is a network emulator which creates a network of virtual hosts,
switches, controllers, and links. Mininet hosts run standard Linux network
software, and its switches support Open Flow for highly flexible custom
routing and SDN. Mininet supports research, development, learning,
prototyping, testing, debugging, and any other tasks that could benefit from
having a complete experimental network on a laptop or other PC.

Creating SDN network topology:

In this step, we use Mininet to create a tree topology with a depth of 2 and

a fanout of 10 switches with 81 hosts as shown in figure (4).

l
ﬁ Core 1 ﬁ Core 2
_I T

Sw’lhl SthQ

Figure (4). SDN network topology

We also specify the POX controller as the controller for the network and
set its IP address to 127.0.0.1 and port to 6633.
Launch of DDoS attacks:

To launch of DDoS attacks in the created topology we used Scapy.

Scapy is used for generation of packets, sniffing, scanning, forging of packet
and attacking. It also used for generation of UDP packets and spoofing the
source IP address of the packets.
Detection and prevention DDoS attacks using the Sample entropy
and PCA algorithms:

The presented method uses Sample Entropy both or PCA methods to detect
and mitigate DDOS attacks in a software different statistical network. The

[Al — Saeed University Journal of Applied Scienc@Q) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

implemented method requires to use one of these steps for detecting the attack
in a network.

Detection Using Sample Entropy:

1. Run the POX controller: In this step, you navigate to the directory where
the POX controller is installed (cd pox) and run the controller with the
I3_detectionEntropy.py script. This script is responsible for calculating the
sample entropy of the network traffic and detecting anomalies.

2. Create a Mininet topology: In this step, you use Mininet to create a tree
topology with a depth of 2 and a fanout of 10 switches. You also specify
the POX controller as the controller for the network and set its IP address
t0 127.0.0.1 and port to 6633.

3. Open xterm for hosts: xterm is a terminal emulator that allows you to run
commands on remote hosts. In this step, you open four xterm windows for
the hosts hl, h2, h3, and h81. These xterm windows will be used to run
commands on the hosts.

4. Launch traffic: In this step, you run the traffic.py script on host hl to
generate network traffic between hosts 2 to 82. The -s and -e arguments
specify the start and end hosts for the traffic flow. This traffic will be used
to generate a baseline entropy value for normal traffic.

5. Generate entropy values: The POX controller generates a list of entropy
values for the traffic generated in step 4. The entropy value is a measure
of the irregularity or unpredictability of the network traffic. The least value
obtained from this list is considered the threshold entropy for normal
traffic. This threshold value will be used to detect anomalies in the network
traffic.

6. Launch attack: In this step, you simulate a network attack on host h81 by
running the attack.py script on hosts h2 and h3. This script generates a
large volume of traffic directed at host h81, simulating a DDoS attack. You
observe the entropy values calculated by the POX controller during the
attack. If the entropy value decreases below the threshold value obtained
in step 5, it indicates that an attack is happening, and the algorithm detects it.

In summary, using sample entropy to detect network attacks involves
generating a baseline entropy value for normal traffic and then monitoring the
entropy value for any deviations from the baseline. If the entropy value falls

[Al — Saeed University Journal of Applied Scienc@(D Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

below the threshold, it indicates that an attack is happening, and the algorithm

detects it.

Detection Using PCA:

1. Run the POX controller: In this step, you navigate to the directory where
the POX controller is installed (cd pox) and run the controller with the
I3_detectionPCA.py script. This script implements the detection algorithm
using PCA.

2. Create a Mininet topology: In this step, you use Mininet to create a tree
topology with a depth of 2 and a fanout of 10 switches. You also specify
the POX controller as the controller for the network and set its IP address
to 127.0.0.1 and port to 6633.

3. Open xterm for hosts: In this step, you open four xterm windows for the
hosts hl, h2, h3, and h81. These xterm windows will be used to run
commands on the hosts.

4. Launch traffic: In this step, you run the traffic.py script on host hl to
generate network traffic between hosts 2 to 82. This traffic will be used to
generate the PCA axis and the threshold for normal traffic.

5. Generate deltaY values: The POX controller generates a list of deltaY
values for the traffic generated in step 4. The deltaY value is the difference
between the y-coordinates of a packet and the point obtained by drawing a
perpendicular from this packet to the principal component axis. The
principal component axis is obtained using PCA, which is a statistical
technique used to reduce the dimensionality of data while retaining as
much information as possible.

6. Launch attack: In this step, you simulate a network attack on host h64 by
running the attack.py script on hosts hl. This script generates a large
volume of traffic directed at host h81, simulating a DDoS attack. You
observe the deltaY values calculated by the POX controller during the
attack. If the deltaY values converge to the interval (-1, 1), it indicates that
an attack is happening, and the algorithm detects it.

In summary, using PCA to detect network attacks involves generating the
PCA axis and the threshold for normal traffic using network traffic and then
monitoring the deltaY values for any deviations from the normal range. If the
deltaY values converge to the interval (-1, 1), it indicates that an attack is
happening, and the algorithm detects it.

[Al — Saeed University Journal of Applied Scienc@]) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Developing a model to detect and prevent DDoS attacks in SDN
using machine learning:

The proposed model for detecting and preventing a DDoS attack, which
was developed in our research, boils down to identifying the attacker's switch
ID and port number, and collecting them as a unique number that is added to
a special list. Before processing data traffic for any device, the ID number and
port number are combined as a unique number, and the list is searched. If they
match, this data is ignored, without closing the console. Figure (5), shows the
proposed model for detecting and preventing a DDoS attack in SDN
environments.

[Al — Saeed University Journal of Applied Scienc(lsz) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Define and load the

v

Creating network

dmimaalaan .

2

Runing the POX controller
with proposed algorithm

¥

Create traffic using Scapy tool

y

Create attack using Scapy tool

Yes

If attack
Detected

A 4

Determine the attacker's switch
ID and port number

X Data

Collect the attacker's switch ID and
port number as a unique number

v

Add the unique number to a special

v

The data from a unique
number is ianored

v

The POX controller continues
to work without stopping

End

v

Figure (5). The proposed model for detecting and preventing a DDoS
attack in SDN environments.

[Al — Saeed University Journal of Applied Scienc@?) Vol (7), No(2), Dec., 2024]

Raad Al Selwi et al. Developing a model to detect and prevent DDoS...

Results and Discussion:
Results:
Figure (6) shows Creating a Mininet topology.

cnd6@basem-virtual-machine: ~

end6@basem-virtual-machine cndé@basem-virtual-machine:

[sudo] password for cnd
*#% Creating network

**% pdding controller

Unable to contact the remote controller at 127..0.1:6633

**% pdding hosts:

h1 h2 h3 h4 hs he h7 hg ho hie hii hiz h13 hi14 hi5 hie hi7 h18 h19 h2e h21 h22 h23 h24 h25 h26 h27 h2g h29 h3e h31 h32 h33 h
34 h35 h36 h37 h38 h39 h4® h41 h42 h43 ha4 h4a5 h46 h47 h48 h49 h506 h51 h52 h53 h54 h55 h56 h57 h58 h59 h6@ h61 h62 h63 he4 h
65 h66 h67 h68 h69 h7e h71 h72 h73 h74 h75 h76 h77 h78 h79 hse hs1i

#*% Adding switches:

51 52 s3 s4 s5 s6 s7 s8 s9 510

#%% Adding links:

(s1, s2) (s1, s3) (s1, s4) (s1, s5) (s1, s6) (s1, s7) (s1, s8) (s1, s9) (s1, s18) (s2, h1) (s2, h2) (s2, h3) (s2, h4) (s2, h
5) (s2, he) (s2, h7) (s2, h8) (s2, h9) (s3, h1e) (s3, h11) (s3, h12) (s3, h13) (s3, hi4) (s3, h15) (s3, hie) (s3, h17) (s3,
h18) (s4, h19) (s4, h20) (s4, h21) (s4, h22) (s4, h23) (s4, h24) (s4, h25) (s4, h26) (s4, h27) (s5, h28) (s5, h29) (s5, h3@)
(s5, h31) (s5, h32) (s5, h33) (s5, h34) (s5, h35) (s5, h36) (s6, h37) (s6, h38) (s6, h39) (s6, h4e) (s6, h41) (s6, ha2) (s6
, h43) (s6, hdd) (s6, hds) (s7, hde) (s7, ha7) (s7, h48) (s7, hd9) (s7, h50) (s7, h51) (s7, h52) (s7, h53) (s7, h54) (s8, hs
5) (s8, hs6) (s8, h57) (s8, hs8) (s8, h59) (s8, he®) (s8, h61) (s8, h62) (S8, h63) (s9, hea) (s9, h65) (s9, hes) (59, h67) (
s9, he8) (s9, he9) (s9, h7e) (s9, h71) (s9, h72) (s1e, h73) (sie, h74) (sie, h7s) (sie, h7e) (sie, h77) (sie, h78) (s1e, h79
) (s16, hse) (s1e, hs1)

#*% configuring hosts

h1 h2 h3 h4 h5 h6 h7 h8 h9 h16 hi1 h12 h13 h14 h15 h16 h17 h18 h19 h26 h21 h22 h23 h24 h25 h26 h27 h28 h29 h30 h31 h32 h33 h
34 h35 h36 h37 h38 h39 h4e h41 h42 h43 ha4 h45 h46 h47 h48 h49 h50 h51 h52 h53 h54 h55 h56 h57 h58 h59 h6@ h61 h62 h63 he4 h
65 h66 h67 h68 h69 h76 h71 h72 h73 h74 h75 h76 h77 h78 h79 hse hs1i

*** Starting controller

ce

*** Starting 10 switches

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

**% Starting CLI:

mininet:

cnd6@basem-virtual-machine: ~

end6é@basem-virtual-machine: ~ cnd6é@basem-virtual-machine: ~/pox

:% sudo mn --switch ovsk --topo tree,depth=2,fanout=9 --controller=remote,ip=127.6.6.1,port=6633

[sudo] password for cnd
*#% Creating network
**% pdding controller
Unable to contact the remote controller at 127.0.0.1:6633
#%% pdding hosts:
h1 h2 h3 h4 h5 h6 h7 hg h9 h1ie hi1 hiz h13 hi4 h15 h16 h17 h18 h19 h2e h21 h22 h23 h24 h25 h26 h27 h28 h29 h3e h31 h32 h33 h
34 h35 h36 h37 h38 h39 h4® h41 h42 h43 h44 h45 h46 h47 h48 h49 h50 h51 h52 h53 h54 h55 h56 h57 h58 h59 h66 h61 h62 h63 héd h
65 h66 h67 h68 h69 h76 h71 h72 h73 h74 h75 h76 h77 h78 h79 hse hs1
#*% adding switches:
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
**x pdding links:
(s1, s2) (s1, s3) (s1, s4) (s1, s5) (s1, s6) (si, s7) (si, s8) (s1, s9) (si, s18) (s2, h1) (s2, h2) (s2, h3) (s2, hd) (s2, h
5) (s2, he) (s2, h7) (s2, h8) (s2, h9) (s3, h1@) (s3, h11) (s3, h12) (s3, h13) (s3, hi4) (s3, hi5) (s3, hie) (s3, h17) (s3,
hi8) (s4, h19) (s4, h20) (s4, h21) (s4, h22) (s4, h23) (s4, h24) (s4, h25) (s4, h26) (s4, h27) (s5, h28) (s5, h29) (s5, h3e)
(s5, h31) (s5, h32) (s5, h33) (s5, h34) (s5, h35) (s5, h36) (s6, h37) (s6, h38) (s6, h39) (s6, had) (s6, h41) (s6, haz) (s6
, ha3) (s6, h44) (s6, h4s) (s7, h46) (s7, ha7) (s7, ha8) (s7, ha9) (s7, hs50) (s7, hs1) (s7, h52) (s7, hs53) (s7, h54) (s8, hs
5) (s8, h56) (s8, h57) (s8, h58) (s8, h59) (s8, h68) (s8, h61) (s8, h62) (s8, h63) (s9, h6d) (s9, h65) (s9, h66) (s9, h67) (
s9, h68) (s9, h69) (s9, h7e) (s9, h71) (s9, h72) (s1@, h73) (sie, h74) (sie, h75) (sie, h7e6) (s1e, h77) (sie, h78) (s1@, h79
) (s16, h8e) (s16, hs1)
**% Configuring hosts
h1 h2 h3 h4 hs he h7 hg ho hie hii hiz h13 hi14 hi5 hie hi7 h18 h19 h2e h21 h22 h23 h24 h25 h26 h27 h2g h29 h3e h31 h32 h33 h
34 h35 h36 h37 h38 h39 h4® h41 h42 h43 ha4 h4a5 h46 h47 h48 h49 h506 h51 h52 h53 h54 h55 h56 h57 h58 h59 h6@ h61 h62 h63 he4 h
65 h66 h67 h68 h69 h7e h71 h72 h73 h74 h75 h76 h77 h78 h79 hge hs1i
*** Starting controller
<]
#**%* starting 10 switches
s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 ...

Figure (6). Creating a Mininet topology

[Al — Saeed University Journal of Applied Scienc@z]) Vol (7), No(2), Dec., 2024

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

The figure (7) shows running the POX controller forwarding to Sample
Entropy is the program file that will be executed.

nd6@basem-virtual-machine: ~/pox

cnd6@basem-virtual-machine: - cnd6@basem-virtual-machine: -/pax

Figure (7). Running the POX controller forwarding to Sample Entropy

The figure (8) shows running the POX controller forwarding to PCA is the
program file that will be executed.

cndé@basem-virtual-machine: ~/pox

cnd6@basem-virtual-machine: -/pox

Figure (8). Running the POX controller forwarding to PCA

After executing these commands, the POX program will run using Python,
and PCA and Sample Entropy will be analyzed to detect DDoS attacks.

Open xterm for hosts:
The figure (9) shows the opening a host h1.

"Node: h1" = O X

d mininet/custom

Figure (9). Open xterm for hosts h1.

[Al — Saeed University Journal of Applied Scienc<55> Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Running for generate normal traffic:
In the xterm window of host hl running the following command for
generate normal traffic as shown in the figure (10).

"Node: h1" - O X

M
el ython3 traffic,py -s 2 -e 68

Figure (10). Running for generate normal traffic

The figure (11) shows normal traffic in host h1.
"Node: h1" - O %

0 proto=udp = 5 d= § 0 1<UDP zpart

0 proto=udp =

JUIP sport

LOL.EL [<UDP ffuli]

Figure (11). Normal traffic in host h1.

Normal Traffic in Sample Entropy:
Normal traffic is implemented by host 1 using the Entropy algorithm as
shown in figure (12).

[Al — Saeed University Journal of Applied Scienc<56> Vol (7), No(2), Dec., 2024]

Raad Al Selwi et al.

Developing a model to detect and prevent DDoS...

cnd6@basem-virtual-machine: ~/pox

cndé@basem-virtual-machine: ~ cnd6@basem-virtual-machine: ~/pox
INFO: forwarding.detectionUsingEntropy:Entropy =
INFO: forwarding.detectionUsingEntropy:1.3407022054633841
INFO: forwarding.detectionUsingEntropy:Entropy =
INFO: forwarding.detectionUsingEntropy:1.3966198058102657
INFO: forwarding.detectionUsingEntropy:Entropy =
INFO:forwarding.detectionUsingEntropy:1.4525374061571472
INFO: forwarding.detectionUsingEntropy:Entropy =
INFO: forwarding.detectionUsingEntropy:1.4865168062438676
INFO: forwarding.detectionUsingEntropy:Entropy =
INFO: forwarding.detectionUsingEntropy:1.520496206330588
INFO:forwarding.detectionUsingEntropy:Entropy
INFO: forwarding.detectionUsingEntropy:1.5544756064173084
INFO: forwarding.detectionUsingEntropy: {IPAddr('10.0.0.23
6.44'): 1, IPAddr('10.6.0.35'): 2, IPAddr('16.0.0.47'): 1,
): 2, IPAddr('16.6.6.11'): 1, IPAddr('10.0.0.42
, IPAddr('10.0.0.65
ddr('10.0.6.9'): 1, IPAddr('10.0.6.106'): 1, IPAddr('10.0.6.25'): 1, IPAddr('16.6.0.62'): 1,
10.0.0.49'): 2, IPAddr('10.0 1PAddr('10.0.0.39'): 2, IPAdr('10.0.0.60'): 1, IPAddr('10.0.0.43
.0.59"): 1, IPAddr('10.0.0 IPAddr('16.0.6.24" , IPAddr('10.0.6.64'): 1, IPAddr('10.0.6.34'): 2,
©'): 2, IPAddr('10.0.0.51" IPAddr('10.0.6.26'): 1, IPAddr('10.0.6.28'): 1}
Entropy : 1.5544756064173084
Entropy 1.5544756064173084
Entropy 1.5544756064173084
Entropy : 1.5544756064173084
Entropy 1.5544756064173084
Entropy : 1.5544756064173084
Entropy 1.5544756064173084
Entropy 1.5544756064173084
Entropy : 1.5544756064173084
Entropy 1.5544756064173084
Entropy : 1.5544756064173084
Entropy 1.5544756064173084
Entropy : 1.5544756064173084
Entropy 1.5544756064173084

1.5544756064173084

1.5544756064173084

1.5544756064173084

1.5544756064173084

2, IPAddr('10.0.0.31'): 1, IPAddr('10.0.0.61"):
IPAddr('10.0.6.5'): 1, IPAddr('10.0.0.40" 1,

1,

Figure (12). Normal Traffic in Sample Entropy.

IPAddr('10.0.

IPAddr('16.0.6.52
): 2, IPAddr('10.0.0.57'): 1, IPAddr('10.0.0.36'): 2, IPAddr('10.6.8.32'): 1
1, IPAdr('10.0.0.6'): 2, IPAddr('10.0.0.14'): 2, IPAddr('10.0.0.19'): 1, IPAddr('10.0.0.16'): 2, IPA
IPAddr('16.0.0.29'): 1,
1,
IPAddr('16.0.0.2

IPAddr ('
IPAddr('1e.0

Normal traffic is implemented by host 1 using the PCA algorithm as shown

in figure (13).

cnd6@basem-virtual-machine: ~/pox

cnd6@basem-virtual-machin cnd6@basem-virtual-machine: ~/pox

deltay
deltay :
deltay
deltay
deltay :
deltay
deltay :
deltay
deltay :
deltay
deltay
deltay :
deltay
deltay :
deltay
deltay

-14.181818181818144
25.97435897435895
17.098901098901162
0.6857142857142833
-17.675080000000017
-20.62500000000001
.52941176470587
12.976608187134524
-12.560080000000007
-14.457142857142877
-17.649350649350644
4.671936758893281
-10.978260869565219
34.04999999999998
31.421538461538447
-25.61538461538463
:forwarding.13_detectionPCA:2 6 not sending packet for 16.6.8.6 back out of the input port
1 -22.140211640211643
:forwarding.13_detectionPCA:2 6 not sending packet for 16.6.8.6 back out of the input port
977832512315263
7.082758620689681
14.978494623655905
-2.6834677419354804
-9.426136363636374
27.951871657753998
16.49243697478991
13.62857142857144
-4.138138138138125
27.442389758179196
8.153846153846175
-30.87179487179489
:forwarding.13_detectionPCA:2 6 not sending packet for 10.0.8.6 back out of the input port
-25.435365853658517
-8.70383275261321
-2.581395348837205
6.634249471458773
-20.539393939393946
-21.59227653140098

deltay
deltay :

Figure (13). Normal Traffic in PCA.

[Al — Saeed University Journal of Applied Scienc@?) Vol (7), No(2),

Dec., 2024

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Launch traffic:
Run the attack traffic from h1 xterm windows to attack on 66 as shown in

figure (14) and (15).

"Node: h1" - O X

root@bazem-virtual-nachine: homes/cndB/mininet/custont | oryagln g Si-ta w-te o =

Figure (14). Run the attack traffic

"Node: h1" _ O X

0 proto=udp = b L |<UDP sport
0 proto=udp = B4 ds L39 [<UDP zport
0 proto=udp = 9,140,] L0, |<UDP sport
frag=0 proto=udp s 1,106,2 0,51 [<UDP =por

0 proto=udp src=17

0 proto=udp = 9& . L0 1UIP =port=

Figure (15). Attack traffic to specified address.

Detection and Prevention of DDOS Attack using Entropy:
The figure (16) shows the POX Controller prediction for DDOS UDP
traffic, the Sample Entropy detection the attack and close the controller.

[Al — Saeed University Journal of Applied Scienc<58> Vol (7), No(2), Dec., 2024]

Raad Al Selwi et al.

Developing a model to detect and prevent DDoS...

cnd6@basem-virtual-machine: ~

Empty diction 1

packet count:

packet count:

packet count:

packet count:

e.e0
and its packet count:

0.0

and its packet count:

0.0

and its packet count:

0.0

and its packet count:

packet count:

packet count:

0.0

and its packet count:

0.0

and its packet count:

0.0

dpid port and its packet count:

{2: {1: 141}

cnd6@basem-virtual-machine: ~/pox

cndé@basem-virtual-machine: ~/pox

DDOS DETECTED

2024-06-02 22:22:34.738952 : BLOCKED PORT NUMBER : 2 OF SWITCH ID: 1

Figure (16). The Sample Entropy Detection the attack

and close the controller

Detection and Prevention of DDOS Attack using PCA:
The figure (17) shows the state of blocked DDOS attack host, PCA
detection the attack and close the controller.

cndé@basem-virtual-machine: ~

cnd6@basem-virtual-machine: ~/pox

cndé@basem-virtual-machine: ~/pox

POX ©.7.0 (gar) / Copyright 2011-2020 James McCauley, et al.

:POX requires one of the following versions of Python: 3.6 3.7 3.8 3.9
:You're running Python 3.10.

:If you run into problems,
.7.0 (gar) is up.

.of_@
.of @
.of_@
.of_e
.of_e
.of @
Lof_
.of @
of_e
.of_e

.263.

(:]

[00-00-00-00-00-01
[00-00-00-00-00-06
[060-00-00-00-00-0a
[00-00-00-00-80-03

[00-00-00-00-80-09
[00-00-00-00-00-04

" 01:[00-00-00-00-00-05
42170943040401e-14
256414560601e-14

263256414560601e-14
-2.842170943040401e-14
1.4210854715202004e-14
5.684341886080802e- 14
-5.684341886080802e-14
-1.4210854715202004e-14
-2.842170943040401e-14

deltay : 0.0

DDOS DETECTED

1]
2]
3]
4]
51
6]
7]
8]
2]

10] connected

try using a supported version.

connected
connected
connected
connected
connected
connected
connected
connected
connected

Figure (17). PCA Detection the attack and close the controller.

[Al — Saeed University Journal of Applied Scienc@Q)

Vol (7), No(2), Dec., 2024

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

Detection and Prevention of DDOS Attack using proposed model:
The figure (18) shows the POX Controller prediction for DDOS UDP traffic,
the proposed model with Sample Entropy detection the attack and prevent
data processing that comes from the attacker.

cndé@basem-virtual-machine: ~/pox Q =

cnd6@basem-virtual-machine: ~ cnd6@basem-virtual-machine: ~/pox

Entropy : ©.0
dpid port and its packet count: 2
Entropy : ©.0
dpid port and its packet count: 2
Entropy : ©.0
dpid port and its packet count: 2
Entropy : ©.0
dpid port and its packet count: 2

DDOS DETECTED

{2: {1: 14}}

2023-08-02 00:23:41.605331 : BLOCKED PORT NUMBER : 2 OF SWITCH ID:

ERROR:packet:(dns) parsing questions: ord() expected string length found
ERROR:packet:(dns) parsing questions: ord() expected string length found
ERROR:packet:(dns) parsing questions: ord() expected string length 1 i found
ERROR:packet:(dns) parsing questions: ord() expected string length 1 i found
ERROR:packet:(dns) parsing questions: ord() expected string length 1 i found
ERROR:packet:(dns) parsing questions: ord() expected string length found
Entropy : ©.0

Empty diction 2 2

ERROR:packet:(dns) parsing questions: ord() expected string length 1, i found
Entropy : 0.0

Figure (18). The proposed model with Sample entropy detects the attack
and prevent data processing that comes from the attacker.

[Al — Saeed University Journal of Applied Scienc<6(D Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

The figure (19) shows the proposed model with PCA detection the attack
and prevent data processing that comes from the attacker.

cndé@basem-virtual-machine: ~/pox

cndé@basem-virtual-machine: ~ cnd6@basem-virtual-machine: ~/pox
USLLET . 2.VOTITIOOUVOVOVES LT
deltay : -2.842170943040401e-14
4 deltay : .105427357601002e-15
deltay : 5
deltay :

DDOS DETECTED
2023-08-02 00:35:15.797756 : BLOCKED PORT NUMBER : 2 OF SWITCH ID:

ERROR:packet:(dns) parsing questions: ord() expected string of length 1, but int found
ERROR:packet: (dns) parsing questions: ord() expected string of length 1, but int found
ERROR:packet:(dns) parsing questions: ord() expected string of length 1, but int found
ERROR:packet:(dns) parsing questions: ord() expected string of length 1, but int found
ERROR:packet: (dns) parsing questions: ord() expected string of length 1, but int found
ERROR:packet:(dns) parsing questions: ord() expected string of length 1, but int found
ERROR:packet:(dns) parsing questions: ord() expected string of length 1, but int found
ERROR:packet:(dns) parsing questions: ord() expected string of length 1, but int found
ERROR:packet: (dns) parsing questions: ord() expected string of length 1, but int found
JERROR:packet:(dns) parsing questions: ord() expected string of length 1, but int found
JERROR: packet:(dns) parsing questions: ord() expected string of length 1, but int found
ERROR:packet: (dns) parsing questions: ord() expected string of length 1, but int found
ERROR:packet:(dns) parsing questions: ord() expected string of length 1, but int found
BERROR:packet:(dns) parsing questions: ord() expected string of length 1, but int found
IERROR: packet:(dns) parsing questions: ord() expected string of length 1, but int found
;ERRDR:packet:(dns) parsing questions: ord() expected string of length 1, but int found

deltay : -15.441176470588253

deltaY : -36.87843137254903

deltay : -18.081871345029242

S Y] 1C _031Cc7onA7os0400

Figure (19). The proposed model with PCA detects the attack and prevent
data processing that comes from the attacker.

Performance Evaluations and Discussion:

In this section, performance evaluations of the proposed models for DDoS
attack detection using Sample entropy and PCA are discussed.

In Sample entropy, any packet with an entropy value below the threshold
is recorded in a dictionary, and if an entry appears more than five times, it is
assumed to be a DDoS attack. This knobs value of 5 is topologically
dependent. Therefore, a smaller topology may potentially exhibit DDoS
attacks for regular traffic.

As shown in the figure (16) using Sample entropy, the controller detects
the attacker's port number and data continues to flow from the port without
stopping, which causes the network controller to stop and thus the entire
network to stop.

The figure (20) shows the continuous flow of data from the attacker device
and the detection time of the attacks using entropy.

[Al — Saeed University Journal of Applied Scienc<6]> Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

B
U

Data bit rate flow, s
© = N w
Ul = 00N U1 W U,

o
o
N

4 6 8 10

Attack detection time, ms

Figure (20). Continued data flow from the attacking device using entropy.

In PCA analysis, we are taking characteristics of each packet to update the
principal component axis. Each packet destination value is compared with
current principal component axis. During an attack, the principal component
axis is gradually shifted towards the destination value. Hence, there will be
successive decrease in delta Y values, which is an indication of DDoS attack.

As shown in the figure (17) using PCA, the controller detects the attacker's
port number and data continues to flow from the port without stopping, which
causes the network controller to stop and thus the entire network to stop.

The figure (21) shows the continuous data flow from the attacker device
and the detection time using PCA.

4.5

Data bit rate flow, s
= N w
P 00N U w un D

o
o U

4 6 8 10

Attack detection time, ms

o
N

Figure (21). Continued data flow from the attacking device using PCA

[Al — Saeed University Journal of Applied Scienc<62> Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

As shown in Figure (18) and (19) the proposed model for detecting and
preventing a DDoS attack, which was developed in our research, boils down
to identifying the attacker's switch ID and port number, and collecting them
as a unique number that is added to a special list. Before processing data
traffic for any device, the ID number and port number are combined as a
unique number, and the list is searched. If they match, this data is ignored, the
data flow from the attacking device stops, which allows the network
controller to continue working, and thus the network continues to work
without stopping.

The following figure (22) illustrates the detection of the attack using
entropy from the port of the attacking device and preventing the reception
of data from it.

45
4
(%]
-)
S 3
9 25
O
s 2
2 15
8
5 1
©
0.5
0
0 1 2 3 4 5

Attack detection time, ms

Figure (22). Detecting attacks and stopping data flow
from the attacking device using entropy

[Al — Saeed University Journal of Applied Scienc<6?) Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

The following figure (23) shows the detection of the attack using PCA from
the port of the attacking device and preventing the reception of data from it.

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

0 0.5 1 1.5 2 2.5

Attack detection time, ms

Data bit rate flow, s

Figure (23). Detecting attacks and stopping data flow from
the attacked device using PCA

As shown in Figure (22), the time to detect the attacks was 4 milliseconds
and the data flow from the port of the controlling device was stopped. As
shown in Figure (23), the time to detect the attacks was 2 milliseconds and
the data flow from the port of the attacking device was stopped. From the
above-mentioned Figures (22) and (23), it is clear that the PCA algorithm is
the best and fastest in detecting distributed denial of service attacks. The two
figures also show the validity of using the proposed model in our research
paper to detect and prevent distributed denial of service attacks using entropy
and PCA algorithms. Thus, the research has achieved the proposed objectives.
Conclusion:

The SDN network is characterized by dynamic programmability in terms
of redirecting devices through open interfaces, and separating the control
plane and data, as the elements of the control plane are now represented by a
single entity, which is the controller. A DDoS attack is an attempt to make
the services of network unavailable by exhausting the resources. The effect
of this DDoS attack is even worse in an SDN than the traditional one. This is
because, the controller will be invoked every time for a new Origin-
Destination data pair. Hence within a short span of time if the attacker bursts
too much packets into a network it will damage the controller, followed by
the collapse of the network.

[Al — Saeed University Journal of Applied Scienc<64> Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

To detect and prevent DDoS attack, we configure and setup of the virtual
work environment for the network using VMware and Mininet network
emulator. Then we creating SDN network topology, launch of DDoS attacks
in the created topology.

We use POX controller to detection and prevention of DDoS attacks using
Sample entropy and PCA algorithms.

We developed a model to detect and prevent a DDoS attack in SDN
environments using machine learning. The proposed model work to detect the
attack by identifying the attacker's switch ID and port number, and collect
them as a unique number that is added to a special list. Before processing data
traffic for any device, the ID number and port number are combined as a
unique number, and the list is searched. If they match, this data is ignored,
without closing the controller. Finaly, we evaluating the performance of the
proposed model to detect and prevent attacks with Sample entropy and PCA
algorithms. Through this evaluation, it was also proven that the PCA
algorithm is the best and fastest in detecting and preventing a distributed
denial of service attack.

Future Work:
In this paper we are capable to create normal traffic among nodes and

capable to measure the entropy of each flow. The next steps:

1. The port of the attacking device is to be shut down by sending a command
to the switch.

2. Find a mechanism to measure the randomness of each flow in each node
using PCA.

3. Launch DDoS attack and try to capture it with both the methods Sample
entropy and PCA.

4. Trying to come up with a new mechanism other than PCA and sample
entropy measuring to detect DDoS attack in SDN environments
effectively.

[Al — Saeed University Journal of Applied Scienc<65> Vol (7), No(2), Dec., 2024]

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

References:

(1)Di Wu; Jie Li; Sajal K. Das; Jinsong Wu; Yusheng Ji; Zhetao Li. A Novel
Distributed Denial-of-Service Attack Detection Scheme for
Software Defined Networking Environments. IEEE International
Conference on Communications (ICC). 20-24 May 2018. Kansas
City, MO, USA. Electronic ISSN: 1938-1883.

(2)Tian, Qiwen, and Sumiko Miyata. "A DDoS Attack Detection Method
Using Conditional Entropy Based on SDN Traffic" loT 4, no. 2: 95-
111. 12 April 2023. https://doi.org/10.3390/i0t4020006.

(3)Aswanth P. P., Mohammed Ameen, Joe Antony. Analysis of DDoS
Attacks in SDN Environments. Report. Department of Computer
Science University of Tsukuba, Japan. January 10, 2017.

(4)Z. Qin, L. Ou, J. Liu, A. X. Liu J. Zhang, "An Advanced Entropy-Based
DDoS Detection Scheme,” in International Conference on
Information, Networking and Automation, 2010. 67-71.

(5)1. Ra G. No, "An efficient and reliable DDoS attack detection using fast
entropy computation method,” in International Symposium on
Communication and Information technology, 2009, 1223-1228.

(6)Open Networking Foundation. (2014, Jan.) ONF. [Online].
https://www.opennetworking.org/

(7)Ombase P.M., Kulkarni N.P., Bagade S.T., Mhaisgawali A.V. Survey on
DoS attack challenges in software defined networking Int. J.
Comput. Appl., 173 (2) (2017), 19-25.

(8)G. Shang, P. Zhe, X. Bin, H. Aiqun, R. Kui, Flood Defender: Protecting
data and control plane resources under SDN-aimed DoS attacks, in:
IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, 2017, 1-9.

(9)Ahmad, 1., Namal, S., Ylianttila, M., & Gurtov, A. (2015). Security in
Software Defined Networks: A Survey. IEEE Communications
Surveys and Tutorials, 17(4), 2317-2346.
https://doi.org/10.1109/COMST.2015.2474118.

(10) Kandoi, R., & Antikainen, M. (2015). Denial-of-service attacks in

OpenFlow SDN networks. In 2015 IFIP/IEEE International
Symposium on Integrated Network Management (IM) (1322-1326).

[Al — Saeed University Journal of Applied Scienc<66> Vol (7), No(2), Dec., 2024]

https://ieeexplore.ieee.org/author/37086431063
https://ieeexplore.ieee.org/author/37279846500
https://ieeexplore.ieee.org/author/37278509800
https://ieeexplore.ieee.org/author/37279164000
https://ieeexplore.ieee.org/author/37287372900
https://ieeexplore.ieee.org/author/37085865434
https://ieeexplore.ieee.org/xpl/conhome/8411665/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8411665/proceeding

[Raad Al Selwi et al. Developing a model to detect and prevent DDoS...]

(11)H. Wang, L. Xu and G. Gu, “Flood Guard: A DoS Attack Prevention
Extension in Software-Defined Networks”, 2015 45th Annual
IEEE/IFIP International Conference on Depend-able Systems and
Networks, Rio de Janeiro, 239-250.

(12) C. Ji M. Thottan, "Anomaly Detection in IP Networks," IEEE Transaction
on Signal Processing, vol. 51, no. 8, 2291-2204, Aug 2003.

(13) Seyed Mohammad Mousavi, Marc St-Hilaire: Early Detection of DDoS
Attacks Against Software Defined Network Controllers. J. Netw. Syst.
Manag. 26 (3): 573-591 (2018).

(14)D. Schnackenberg, R. Balupari, D, Kindred L. Feinstein, "Statistical
Approaches to DDoS Attack Detection and Response,” in DARPA
Information Survivability Conference and Expedition, vol. 2003, Apr.

(15) F. M. Ham, Principles of neurocomputing for Science and Engineering.:
McGraw Hill, 1991.

(16)D. O, Brien S. Seufert, "Machine Learning for Automatic Defence
against Distributed Denial of Service Attack," in ICC, 2007, 1217-

1222.
(17)G. Serpen M. Sabhnani. (2014, Jan) BSTU Laboratory of Artificial
Neural Networks. [Online]. http://neuro.bstu.by/ai/To-

dom/My_research/Papers-0/Forresearch/D-mining/Anomaly-D/KDD-
cup-99/mimta03.pdf

(18) IBM. (2014, Feb) IBM SPSS Modeler. [Online].
http://pic.dhe.ibm.com/infocenter/spssmodl/v15rOmO/index.jsp?topic=
%2Fcom.i bm.spss.modeler.help%?2Fidh_neuralnet_network.htm.

(19) Idris Z. Bholebawa, Upena D. Dalal. Performance Analysis of
SDN/OpenFlow Controllers: POX Versus Floodlight Wireless Pers
Commun DOI 10.1007/s11277-017-4939-z. Springer Science Business
Media, LLC 2017.

[Al — Saeed University Journal of Applied Scienc<67> Vol (7), No(2), Dec., 2024]

https://dblp.org/pid/161/2083.html
https://dblp.org/pid/57/4385.html
https://dblp.org/db/journals/jnsm/jnsm26.html#MousaviS18
https://dblp.org/db/journals/jnsm/jnsm26.html#MousaviS18
http://neuro.bstu.by/ai/To-dom/My_research/Papers-0/Forresearch/D-mining/Anomaly-D/KDD-cup-99/mlmta03.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Papers-0/Forresearch/D-mining/Anomaly-D/KDD-cup-99/mlmta03.pdf
http://neuro.bstu.by/ai/To-dom/My_research/Papers-0/Forresearch/D-mining/Anomaly-D/KDD-cup-99/mlmta03.pdf

